5 research outputs found

    Using Sat solvers for synchronization issues in partial deterministic automata

    Full text link
    We approach the task of computing a carefully synchronizing word of minimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experimental results demonstrate that this approach gives satisfactory results for automata with up to 100 states even if very modest computational resources are used.Comment: 15 pages, 3 figure

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    DFAs and PFAs with Long Shortest Synchronizing Word Length

    Full text link
    It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on nn states always has a shortest synchronizing word of length at most (n1)2(n-1)^2, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reaching this bound was only given for n4n \leq 4, and with bounds on the number of symbols for n10n \leq 10. Here we give the full analysis for n6n \leq 6, without bounds on the number of symbols. For PFAs the bound is much higher. For n6n \leq 6 we do a similar analysis as for DFAs and find the maximal shortest synchronizing word lengths, exceeding (n1)2(n-1)^2 for n=4,5,6n =4,5,6. For arbitrary n we give a construction of a PFA on three symbols with exponential shortest synchronizing word length, giving significantly better bounds than earlier exponential constructions. We give a transformation of this PFA to a PFA on two symbols keeping exponential shortest synchronizing word length, yielding a better bound than applying a similar known transformation.Comment: 16 pages, 2 figures source code adde

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2
    corecore